Quick Start
Get started with VITA in minutes. This guide will help you set up a basic cognitive mesh with autonomous AI agents.
Installation
pip install vita-cogmesh
Basic Example
from vita import CognitiveMesh, Agent
mesh = CognitiveMesh(name="quickstart")
agent = Agent(name="processor-1")
mesh.register(agent)
mesh.run()
Installation
Complete installation guide for different environments.
Using pip
# Create virtual environment
python -m venv venv
source venv/bin/activate # Unix
venv\Scripts\activate # Windows
# Install VITA
pip install vita-cogmesh
Using Docker
docker pull vita/mesh:latest
docker run -p 50051:50051 vita/mesh:latest
Prerequisites
System requirements and setup instructions.
System Requirements
- CPU:4+ cores recommended
- RAM:8GB minimum, 16GB+ recommended
- Storage:1GB for base installation
- Network:Stable internet connection
Development Environment
# Install development tools
pip install -r requirements-dev.txt
# Set up pre-commit hooks
pre-commit install
Dependencies
Core dependencies and optional packages for enhanced functionality.
Required Dependencies
- Python:3.8 or higher
- Go:1.18 or higher
- Node.js:16+
Optional Dependencies
# GPU Support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Monitoring Tools
pip install prometheus-client grafana-api
# Development Tools
pip install pytest pytest-asyncio black mypy
Basic Usage
Learn the fundamentals of using VITA.
Creating a Mesh
from vita import CognitiveMesh
mesh = CognitiveMesh(
name="my-mesh",
config={
"max_agents": 10,
"learning_rate": 0.01
}
)
Adding Agents
from vita import Agent
# Create text processing agent
text_agent = Agent(
name="text-processor",
capabilities=["nlp"]
)
# Create vision processing agent
vision_agent = Agent(
name="vision-processor",
capabilities=["vision"]
)
# Register agents
mesh.register(text_agent)
mesh.register(vision_agent)
Best Practice
Start with a small number of agents and gradually scale up as needed. Monitor performance and resource usage.
Architecture Overview
A comprehensive look at VITA's distributed cognitive mesh architecture.
System Overview
vita/
├── core/ # Core mesh components
├── agents/ # Agent implementations
├── runtime/ # WebAssembly runtime
├── network/ # Communication layer
└── security/ # Security components
Design Philosophy
- Distributed First:Built for scalable, distributed operations
- Security by Design:End-to-end encryption and sandboxing
- Privacy Preserving:Federated learning and differential privacy
- Cloud Native:Kubernetes-ready, containerized deployment
Key Features
VITA combines high-performance Go networking, Python's AI capabilities, and WebAssembly security in a unified platform.
Mesh Architecture
The VITA cognitive mesh is built on a distributed architecture that enables seamless communication and collaboration between AI agents.
Core Components
- Mesh Controller:Central orchestrator for agent coordination
- Agent Runtime:WebAssembly-based secure execution environment
- Learning Engine:Federated learning and model management
- Communication Layer:High-performance Go messaging system
Design Principles
Built on cloud-native principles: containerized, scalable, and resilient. Each component is independently scalable.
Agent Communication
Agents communicate through a high-performance message passing system.
Message Types
from vita.messages import Message
# Task message
task_msg = Message(
type="TASK",
payload={"action": "process_data"}
)
# Learning update
learning_msg = Message(
type="MODEL_UPDATE",
payload={"weights": model.get_weights()}
)
Communication Patterns
- Direct:Point-to-point agent communication
- Broadcast:Send to all agents in the mesh
- Pub/Sub:Topic-based messaging
- Request/Response:Synchronous patterns
Federated Learning
Privacy-preserving collaborative learning across distributed agents.
Training Configuration
from vita.learning import FederatedConfig
config = FederatedConfig(
rounds=10,
min_agents=3,
aggregation="fedavg",
privacy={
"differential_privacy": True,
"epsilon": 0.1
}
)
Model Updates
# Agent-side training
local_update = await agent.train_local(data)
await agent.submit_update(local_update)
# Mesh-side aggregation
global_model = await mesh.aggregate_updates(
min_updates=5,
timeout=300
)
Security Model
Understanding VITA's comprehensive security architecture.
Security Layers
- Network Security:TLS 1.3, mutual authentication
- Agent Isolation:WebAssembly sandboxing
- Data Privacy:Differential privacy, encryption at rest
- Access Control:Role-based access control (RBAC)
Authentication Flow
from vita.security import AuthFlow
auth = AuthFlow(
method="jwt",
key_rotation=True,
mfa_required=True,
session_timeout=3600
)
Security Best Practices
Always use secure communication channels and regularly rotate authentication credentials in production environments.
Mesh Configuration
Configure your cognitive mesh for optimal performance and scalability.
Basic Configuration
from vita import MeshConfig
config = MeshConfig(
name="production-mesh",
version="1.0.0",
environment="production",
max_agents=100,
timeout=30
)
Advanced Settings
advanced_config = {
"retry_policy": {
"max_attempts": 3,
"backoff_factor": 1.5
},
"load_balancing": {
"strategy": "least_loaded",
"health_check_interval": 30
}
}
Agent Configuration
Configure individual agents for specific tasks and capabilities.
Agent Types
from vita.agents import ProcessorAgent
agent = ProcessorAgent(
name="text-processor",
capabilities=["nlp", "sentiment"],
models={
"nlp": "bert-base-uncased",
"sentiment": "distilbert"
}
)
Runtime Settings
runtime_config = {
"execution": {
"timeout": 60,
"max_retries": 3
},
"resources": {
"memory": "2Gi",
"cpu": "1"
}
}
Network Settings
Configure network behavior and communication patterns.
Protocol Configuration
network_config = {
"protocols": {
"mesh": {
"type": "grpc",
"port": 50051,
"max_connections": 1000
},
"monitoring": {
"type": "http",
"port": 8080
}
}
}
Service Discovery
discovery_config = {
"mechanism": "dns",
"interval": 30,
"zones": ["us-east", "us-west"]
}
Network Security
Always use TLS for production deployments and configure appropriate firewall rules.
Security Settings
Configure security settings for your mesh deployment.
Authentication
from vita.security import SecurityConfig
security = SecurityConfig(
auth_method="jwt",
token_expiry="24h",
refresh_enabled=True,
allowed_origins=["https://yourdomain.com"]
)
Access Control
rbac_config = {
"roles": {
"admin": ["read", "write", "manage"],
"operator": ["read", "write"],
"viewer": ["read"]
},
"default_role": "viewer"
}
Resource Limits
Configure resource constraints for optimal performance.
Memory Management
memory_config = {
"heap_size": "4Gi",
"cache_size": "2Gi",
"buffer_pool": "1Gi"
}
Resource Planning
Carefully plan resource allocation based on your workload patterns and agent requirements.
Custom Agents
Create and deploy custom agents with specialized capabilities.
Agent Template
from vita import BaseAgent
class CustomAgent(BaseAgent):
def __init__(self, name, config):
super().__init__(name, config)
self.capabilities = ["custom_task"]
async def process_task(self, task):
# Custom task processing logic
result = await self.execute_custom_logic(task)
return result
async def execute_custom_logic(self, task):
# Implement your custom processing here
pass
Agent Registration
# Register custom agent
custom_agent = CustomAgent(
name="specialized-agent",
config={
"model_path": "models/custom.pt",
"batch_size": 32
}
)
mesh.register_agent(custom_agent)
Best Practices
Always implement proper error handling and resource cleanup in custom agents. Test thoroughly before deployment.
Scaling
Scale your mesh infrastructure to handle increased workloads.
Horizontal Scaling
from vita.scaling import AutoScaler
scaler = AutoScaler(
min_instances=3,
max_instances=10,
target_cpu_utilization=80,
cooldown_period=300
)
Load Balancing
load_balancer_config = {
"algorithm": "round_robin",
"health_check": {
"interval": 30,
"timeout": 5,
"healthy_threshold": 2,
"unhealthy_threshold": 3
}
}
Scaling Considerations
Monitor resource usage and costs when implementing auto-scaling. Set appropriate limits to prevent runaway scaling.
Monitoring
Monitor and observe your mesh deployment.
Metrics Collection
from vita.monitoring import MetricsCollector
metrics = MetricsCollector(
backend="prometheus",
interval=15,
exporters=["node", "mesh"]
)
Alerting
alert_rules = {
"high_latency": {
"metric": "request_duration_seconds",
"threshold": 5,
"duration": "5m",
"severity": "warning"
},
"error_rate": {
"metric": "request_errors_total",
"threshold": 0.1,
"duration": "5m",
"severity": "critical"
}
}
Monitoring Dashboard
Use Grafana or similar tools to visualize metrics and create custom dashboards for your mesh deployment.
Deployment
Deploy your mesh in production environments.
Container Deployment
version: '3'
services:
mesh-controller:
image: vita/controller:latest
ports:
- "50051:50051"
environment:
- NODE_ENV=production
- MESH_NAME=production
volumes:
- mesh-data:/data
Cloud Deployment
from vita.cloud import CloudProvider
provider = CloudProvider(
type="aws",
region="us-east-1",
auto_scale=True,
spot_instances=True
)
Troubleshooting
Common issues and their solutions.
Common Issues
Connection Issues
If agents can't connect, check network settings and ensure ports are open.
Debugging
from vita.debug import Debug
debug = Debug(
level="verbose",
log_file="debug.log",
include_traces=True
)
Mesh API
Core API methods for managing the cognitive mesh.
Lifecycle Management
from vita import CognitiveMesh
# Initialize mesh
mesh = CognitiveMesh(name="production")
await mesh.initialize()
# Start operations
await mesh.start()
# Graceful shutdown
await mesh.shutdown()
Agent Management
# Register agent
await mesh.register_agent(agent)
# Get agent status
status = await mesh.get_agent_status(agent_id)
# Remove agent
await mesh.remove_agent(agent_id)
API Versioning
The Mesh API follows semantic versioning. Breaking changes are only introduced in major versions.
Agent API
API methods for implementing and managing agents.
Agent Implementation
from vita import Agent
class CustomAgent(Agent):
async def initialize(self):
await self.load_models()
await self.connect_services()
async def process(self, message):
result = await self.handle_message(message)
return result
async def cleanup(self):
await self.save_state()
await self.disconnect()
Capability Management
# Add capabilities
agent.add_capability("nlp")
agent.add_capability("vision")
# Check capabilities
if agent.has_capability("nlp"):
result = await agent.process_text(text)
# Remove capability
agent.remove_capability("vision")
Resource Management
Always implement proper cleanup in your agents to prevent resource leaks.
Events
Event system for mesh and agent interactions.
Event Types
from vita.events import EventHandler
# System events
@mesh.on("agent.joined")
async def handle_join(event):
agent_id = event.agent_id
print(f"Agent {agent_id} joined")
# Custom events
@mesh.on("task.completed")
async def handle_completion(event):
task_id = event.task_id
await process_completion(task_id)
Event Filtering
# Pattern matching
@mesh.on("task.*")
async def handle_task_events(event):
if event.type == "task.completed":
await process_completion(event)
elif event.type == "task.failed":
await handle_failure(event)
# Conditional filtering
@mesh.on("resource.low",
condition=lambda e: e.severity == "critical")
async def handle_critical_resource(event):
await scale_resources(event.resource_type)
Event Handling
Keep event handlers lightweight and non-blocking. Use background tasks for heavy processing.
Error Handling
Handle errors and exceptions in your mesh applications.
Custom Error Types
from vita.exceptions import MeshError
class ModelError(MeshError):
def __init__(self, message, model_id):
super().__init__(message)
self.model_id = model_id
try:
await model.train()
except ModelError as e:
await handle_model_error(e)
State Management
Manage and persist mesh and agent state.
State Store
from vita.state import StateManager
state = StateManager(
backend="etcd",
persistence=True,
sync_interval=30
)
Checkpointing
# Save mesh state
await mesh.save_checkpoint("checkpoint-1")
# Restore from checkpoint
await mesh.restore_checkpoint("checkpoint-1")